If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+140x-1600=0
a = 2; b = 140; c = -1600;
Δ = b2-4ac
Δ = 1402-4·2·(-1600)
Δ = 32400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{32400}=180$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-180}{2*2}=\frac{-320}{4} =-80 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+180}{2*2}=\frac{40}{4} =10 $
| 7p/8+3=9p/10 | | 7-2x=-2+7 | | 36x-12+2x=148+7x-5 | | x2=59 | | 1=y/2-16 | | 9r+17=6r+33 | | 89-45+19x=24x+4+25 | | 6x+28=123 | | 5.3+u/8=-7.5 | | 56-3x+6x=71+41-5x | | 30=3y-15 | | 800–5x=70+5x | | 6x3-2=52-6 | | 8=8v-4(v=8) | | -2u/7=-14 | | 28b^2-53b+24=0 | | 5x-5+3=2x-6+5x | | -7-9+3x=12 | | 37-p=28+4pp | | -25=-5+5x | | 8+(1/7x)=9 | | 3x+6+2x+18=24 | | (y-2)-2y=5 | | x+4/2=27 | | 24.8=1.x-4 | | 3(1+x)+4(x-2)=2(x+3)+7(7-x) | | (4x-3)=2(x+4) | | 83=4x+17+3x+24 | | 2q2+7q+5=0 | | 6h(9-3h)=6-3(h+2) | | d/7+4=2 | | 1/3x-1=8 |